

US006455849B1

(12) United States Patent Hilton et al.

(10) Patent No.: US 6,455,849 B1

(45) **Date of Patent:** Sep. 24, 2002

(54)	NORMAL METAL BOUNDARY CONDITIONS
	FOR MULTI-LAYER TES DETECTORS

- (75) Inventors: Gene C. Hilton; John M. Martinis, both of Boulder; Kent D. Irwin, Lyons; David A. Wollman, Louisville, all of CO (US)
 - EG (GG)
- (73) Assignee: The United States of America as represented by the Secretary of Commerce, Washington, DC (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 14 days.
- (21) Appl. No.: 09/671,620
- (22) Filed: Sep. 28, 2000

Related U.S. Application Data

- (60) Provisional application No. 60/157,741, filed on Oct. 5, 1999.
- (51) Int. Cl. H01L 39/00 (52) U.S. Cl. 250/336.2 (58) Field of Search 250/336.2; 374/183,
- 374/185; 338/18, 25; 505/847, 848, 849

(56) References Cited

U.S. PATENT DOCUMENTS

3,506,913 A	4/1970	Lambe et al 324/248
4,403,189 A	9/1983	Simmonds 324/248
4,491,795 A	1/1985	Gelinas 324/248
5,053,706 A	10/1991	Ohkawa 324/248
5,162,731 A	11/1992	Fujimaki 324/248
5,185,527 A	2/1993	Bluzer 250/336.2
5,302,580 A	4/1994	Shimizu et al 505/233
5,306,521 A	4/1994	Shimizu et al 427/62
5,309,095 A	5/1994	Ahonen et al 324/248
5,480,861 A	1/1996	Tanaka et al 505/236
5,532,485 A	7/1996	Bluzer et al 250/336.2

1/1997	Yamazaki 257/30
6/1997	Martinis et al 374/32
6/1997	Irwin et al 250/336.2
1/1998	Kurakado et al 257/32
5/1998	Kurakado et al 257/31
6/1998	Hato 257/662
2/1999	de Rochemont et al 428/373
3/1999	Martinis et al 250/310
3/1999	Irwin et al 250/336.2
5/2001	Hilton et al 250/336.2
	6/1997 6/1997 1/1998 5/1998 6/1998 2/1999 3/1999 3/1999

OTHER PUBLICATIONS

D.A. Wollman et al., "High-Resolution, Energy-Dispersivemicrocalorimeterspectrometer Forx-Raymicroanalysis", *National Institute of Standards & Technology*, pp. 1–25.

G.C. Hilton et al., "Superconducting Transition-Edge Microcalorimeters For X-ray Microanalysis", *National Institute of Standards & Technology*, Sep. 15, 1998, pp. 1–5.


* cited by examiner

Primary Examiner—Constantine Hannaher Assistant Examiner—Shun Lee (74) Attorney, Agent, or Firm—Millen, White, Zelanoo & Branigan, P.C.

(57) ABSTRACT

Multi-layer transition-edge sensors (TES) having improved performance, a method for preparing them and methods of using them. Specifically, the improvement lies in providing normal metal strips along the edges of the superconducting and normal metal layers parallel to the current flow in the TES during operation. These strips (referred to as "banks") provide for both improved detector performance and improved detector robustness against corrosion. This improvement is an important advance particularly for TES-based microcalorimeter detectors. The improved TESs also have many other applications based on the very precise thermometer function achieved by the TES.

37 Claims, 4 Drawing Sheets

